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ABSTRACT

Recommender systems have long grappled with optimizing user sat-
isfaction using only implicit user feedback. Many approaches in the
literature rely on complicated feedback modeling and costly user
studies. We propose online recommender systems as a candidate for
the recently introduced Interaction Grounded Learning (IGL) para-
digm. In IGL, a learner attempts to optimize a latent reward in an
environment by observing feedback with no grounding. We intro-
duce a novel personalized variant of IGL for recommender systems
that can leverage explicit and implicit user feedback to maximize
user satisfaction, with no feedback signal modeling and minimal
assumptions. With our empirical evaluations that include simula-
tions as well as experiments on real product data, we demonstrate
the effectiveness of IGL for recommender systems.
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1 INTRODUCTION

The last decade has seen unprecedented growth in e-commerce, so-
cial media and digital streaming offerings, resulting in users that are
overwhelmed with content and choices. Online recommender sys-
tems offer a way to alleviate this information overload and improve
user experience by providing personalized content. Unfortunately,
optimizing user satisfaction is challenging because explicit feed-
back indicating user satisfaction is rare in practice [4]. To resolve
the problem of data sparsity, practitioners rely on implicit signals
such as clicks [7] or dwell time [25] as a proxy for user satisfaction.
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However, designing an optimization objective using implicit signals
is nontrivial, and many modern recommender systems suffer from
the following challenges.

Challenge 1: No one implicit signal is the true user satisfaction
signal. User clicks are the most readily available signal, and the
Click-Through Rate (CTR) metric has become the gold standard
for evaluating the performance of online recommendation systems
[18]. Yet there are many instances when a user will interact via
clicks and be unsatisfied with the content. The most familiar of
these is clickbait, where poor quality content attracts user clicks by
exploiting cognitive biases such as caption bias [5], position bias [6]
or the curiosity gap [15, 16]. Optimization of the CTR will naturally
promote clickbait items that provide negative user experiences and
cause distrust in the recommender system [21]. Recent studies show
that clicks may even be a signal of user dissatisfaction. In laboratory
studies of online news reading [11] and Spotify listening sessions
[22], half of the clicked on content was actually disliked by users.

Challenge 2: Incorporating multiple implicit feedback signals re-
quires manual feature engineering. In addition to clicks, user implicit
feedback can include dwell time [25], mouse movement [8], scroll
information [14] and gaze [19]. One popular approach uses dwell
time to filter out noisy clicks, with the reasoning that satisfied users
stay on pages longer [25]. Although the industry standard is 30+
seconds of dwell time for a “meaningful” click, this number actually
varies depending on the page topic, readability and content length
[9]. It is equally challenging to incorporate other signals, for exam-
ple, behaviors such as viewport time, dwell time and scroll patterns
have a complicated temporal relationship and represent preference
in different phases [11]. There is an extensive body of work on
modeling different implicit feedback signals [10, 20], however these
niche models may not generalize well across a diverse user base, or
stay relevant as recommender systems and their users evolve.

To tackle these challenges, we propose online recommender sys-
tems as a candidate for Interaction-Grounded Learning (IGL) [23].
IGL is a learning paradigm where a learner optimizes for latent
rewards by interacting with the environment and associating ob-
served feedback with the unobservable true reward. Although IGL
was originally inspired by brain-computer interface applications,
in this paper we demonstrate that the framework, when utilizing a
different generative assumption and augmented with an additional
latent state, is also well suited for recommendation applications.
Existing approaches such as reinforcement learning and traditional
contextual bandits suffer from the choice of reward function. How-
ever IGL resolves the 2 above challenges while making minimal
assumptions about the value of observed user feedback. Our new
approach is able to incorporate both explicit and implicit signals,
leverage ambiguous user feedback and adapt to the different ways
in which users interact with the system.
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Our Contributions. We introduce IGL for recommender sys-
tems, allowing us to leverage implicit and explicit feedback signals
and mitigate the need for reward engineering. We present the first
IGL strategy for context-dependent feedback, the first use of in-
verse kinematics as an IGL objective, and the first IGL strategy for
more than two latent states. Using simulations and real production
data, we demonstrate that recommender systems require at least 3
reward states, and that IGL is able to address two big challenges
for modern online recommender systems.

2 BACKGROUND ON
INTERACTION-GROUNDED LEARNING

Problem Statement. Consider a learner that is interacting with
an environment while trying to optimize their policies without
access to any grounding or explicit reward signal. At each time
step, the stationary environment generates a context x € X which
is sampled i.i.d. from a distribution dy. The learner observes the
context and then selects an action a € A from a finite action set.
In response, the environment jointly generates a latent reward and
feedback vector (r,y) € R X Y conditional on (x, a). However, the
learner is only able to observe y and not r. Since the latent reward
can be either deterministic or stochastic, let R(x, a) := E(x,q)[7]
denote the expected reward after choosing action a for context
x. In the IGL setting, the context space X and feedback vector
space Y can be arbitrarily large. Let 7 € IT : X — A(A) denote
a stochastic policy, with corresponding expected return V() :=
E(y, a)~d0><7t[ r]. In IGL, the learner’s goal is to find the optimal
policy 7" = argmax_ ;;V (), while only able to observe context-
action-feedback (x, a, y) triples.

In the recommender system setting, the context x is the user,
the action a is the recommended content and the feedback y is the
user feedback. Unfortunately existing IGL approaches ([23], [24])
leverage assumptions designed for classification and control tasks
which are a poor fit for recommendation scenarios: (i) context-
independence of the feedback and (ii) binary latent rewards.
Feedback Dependence Assumptions. It is information theoreti-
cally impossible to solve IGL without assumptions about the relation
between x, a and y [24]. In the first paper on IGL, the authors as-
sumed full conditional independence of the feedback on the context
and chosen action, i.e. y L x, a|r. For recommender systems, this
undesirably implies that all users communicate preferences identi-
cally for all content. In the following paper, Xie et al. [24] loosen
full conditional independence by considering context conditional
independence, i.e. y L x|a, r. For our setting, this corresponds to
the user feedback varying for combinations of preference and con-
tent, but remaining consistent across all users. Neither of these
two assumptions are applicable in the setting of online content rec-
ommendation because different users interact with recommender
systems in different ways. This is evidenced by our production
data from a real world image recommendation system (see Sec. 4.3)
along with existing results in the literature [1, 17]. By assuming
user-specific communication rather than item-specific communica-
tion, we allow for personalized reward learning.

Number of Latent Reward States. Prior work shows the binary
latent reward assumption, along with an assumption that rewards
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are rare under a known reference policy, is sufficient for IGL to suc-
ceed. Specifically, optimizing the contrast between a learned policy
and the oblivious uniform policy is able to succeed when feedback
is both context and action independent [23]; and optimizing the
contrast between the learned policy and all constant-action policies
succeeds when the feedback is context independent [24].

Although the binary latent reward assumption (e.g., satisfied
or dissatisfied) appears reasonable for recommendation scenarios,
it fails to account for user indifference versus user dissatisfaction.
This observation was first motivated by our production data, where
a 2 state IGL policy would sometimes maximize feedback signals
with obviously negative semantics. Assuming users ignore most
content most of the time [13], negative feedback can be as difficult
to elicit as positive feedback, and a 2 state IGL model is unable to
distinguish between these extremes. Hence, we posit a minimal
latent state model for recommender systems involves 3 states: (i)
r = 1, when users are satisfied with the recommended content, (ii)
r = 0, when users are indifferent or inattentive, and (iii) r = —1,
when users are dissatisfied.

3 DERIVATIONS

We now address the first of the previously mentioned challenges
from Sec. 1. For the recommender system setting, we use the as-
sumption that y L a|x, r, namely that the feedback y is independent
of the displayed content a given the user x and their disposition
toward the displayed content r € {—1,0, 1}. Thus, we assume that
users may communicate in different ways, but a given user ex-
presses satisfaction, dissatisfaction and indifference in the same
way.

The statistical dependence of y on x frustrates the use of learning
objectives which utilize the product of marginal distributions over
(x,y). Essentially, given arbitrary dependence upon x, learning
must operate on each example in isolation without requiring com-
parison across examples. This motivates attempting to predict the
current action from the current context and the currently observed
feedback, i.e., inverse kinematics.

3.0.1 Inverse Kinematics. In this section we motivate our inverse
kinematics strategy using exact expectations. When acting accord-
ing to any policy P(alx), we can imagine trying to predict the action
taken given the context and feedback; the posterior distribution is

P(alx)P(yla, x)

P(aly,x) = Pyl) (Bayes rule)
= P(alx) Zr: %P(Ha, x)  (Total Probability)
= P(alx) Z %P(Ha, x) (y L alx,r)

= P(a|x )Z Plrly.x) ——="—-P(r|a,x) (Bayes rule)

P(r|x)
P(r|a,x)P(a,x) o
= Zr: P(rly, x)m. (Total Probability)
(1)

We arrive at an inner product between a reward decoder term

P(r|y, x) and a reward predictor term %.
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3.0.2 Extreme Event Detection. Direct extraction of a reward pre-
dictor using maximum likelihood on the action prediction problem
with equation (1) is frustrated by two identifiability issues: first,
this expression is invariant to a permutation of the rewards on a
context dependent basis; and second, the relative scale of two terms
being multiplied is not uniquely determined by their product. To
mitigate the first issue, we assume ), P(r = 0|a, x)P(alx) > %,
i.e., nonzero rewards are rare under P(a|x); and to mitigate the
second issue, we assume the feedback can be perfectly decoded, i.e.,
P(rly,x) € {0,1}. Under these assumptions we have

P(r =0|a,x)P(a|x)
2 P(r = 0la,x)P(alx)
< 2P(r =0|a,x)P(alx) < 2P(alx). (2)

r=0 = P(aly,x) =

Equation (2) forms the basis for our extreme event detector: anytime
the posterior probability of an action is predicted to be more than
twice the prior probability, we deduce r # 0.

Note a feedback merely being apriori rare or frequent (i.e., the
magnitude of P(y|x) under the policy P(a|x)) does not imply that
observing such feedback will induce an extreme event detection;
rather the feedback must have a probability that strongly depends
upon which action is taken. Because feedback is assumed condi-
tionally independent of action, the only way for feedback to help
predict which action is played is via the (action dependence of the)
latent reward.

3.0.3 Extreme Event Disambiguation. With 2 latent states, r #
0 = r = 1, and we can reduce to a standard contextual ban-
dit with inferred rewards 1(P(aly,x) > 2P(a|x)). With 3 latent
states,r # 0 = r = +1, and additional information is neces-
sary to disambiguate the extreme events. We assume partial re-
ward information is available via a “definitely negative” function
dn : X XY — {-1,0} where P(dn(x,y) = 0|r = 1) = 1 and
P(dn(x,y) = —1|r = —1) > 0. This reduces extreme event disam-
biguation to one-sided learning [2] applied only to extreme events,
where we try to predict the underlying latent state given (x, a). We
assume partial labelling is selected completely at random [3] and
treat the (constant) negative labelling propensity « as a hyperpa-
rameter. We arrive at our 3-state reward extractor

0  P(aly,x) < 2P(alx)
p(x,a,y) =1-1 P(aly,x) > 2P(a|]x) and dn(x,y) = -1,  (3)
a  otherwise

equivalent to Zhang and Lee [26, Equation 11] scaled by a. Note
setting o = 1 embeds 2-state IGL.

3.0.4 Implementation Notes. In practice, P(a|x) is known but the
other probabilities are estimated. P(aly, x) is estimated online using
maximum likelihood on the problem predicting a from (x, y), i.e.,
on a data stream of tuples ((x, y), a). The current estimates induce
p(x, a,y) based upon the plug-in version of equation (3). In this
manner, the original data stream of (x, a, y) tuples is transformed
into stream of (x, a, 7 = p(x, a,y)) tuples and reduced to a standard
online contextual bandit problem.

As an additional complication, although P(alx) is known, it is
typically a good policy under which rewards are not rare (e.g., offline
learning with a good historical policy; or acting online according to
the policy being learned by the IGL procedure). Therefore we use
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Algorithm 1 IGL, Inverse Kinematics and either 2 or 3 Latent

States.

Input: Contextual bandit algorithm CB-Alg.

Input: Calibrated weighted multiclass classification algorithm
MC-Alg.

Input: Definitely negative oracle DN. #
DN(...) = 0 for 2 state IGL
Input: Negative labelling propensity a. #

a = 1 for 2 state IGL
Input: Action set size K.
1: 1 < new CB-Alg.
2: IK « new MC-Alg.
3: fort=1,2,...;do
4 Observe context x; and action set A; with |A;| = K.

5. if On-policy IGL then

6: P(:|xt) « m.predict(xs, Ar). #
Compute action distribution

7: Play a; ~ P(-|x;) and observe feedback y;.

8. else

9: Observe (x;, ar, Y, P(+|xt))-

100wy « 1/(KP(ar|xy)). # Synthetic uniform distribution

11: ﬁ(at|yt, xt) « IK.predict((xs, yr), Az, ar). #
Predict action probability

12: if Kﬁ(at|yt,xt) < 2 then # ft =0

13: m.learn(xz, az, Ag, 1y = 0, wy)

14:  else #7 #£0

15: if DN(...) = 0 then

16: m.learn(x;, az, As, rr = @, wy)

17: else # Definitely negative

18: m.learn(x;, ar, A, re = =1, we)
19:  IKlearn((xs, yr), As, ar, we).

importance weighting to synthesize a uniform action distribution
P(a|x) from the true action distribution.! Ultimately we arrive at
the procedure of Algorithm 1.

4 EMPIRICAL EVALUATIONS

Due to the sensitivity around production metrics and customer seg-
ments, most experiments demonstrate qualitative effects via simula-
tion, with simulator properties inspired by production observations.
Our final experiment (Sec. 4.3) includes relative performance data
from a production real-world image recommendation scenario.
Abbreviations. Algorithms are denoted by the following abbrevia-
tions: Personalized IGL for 2 latent states (IGL-P(2)); Personalized
IGL for 3 latent states (IGL-P(3)).

General Evaluation Setup. At each time step ¢, the context x;
is provided from either the simulator (Sec. 4.1-4.2) or the logged
production data (Sec. 4.3). The learner then selects an action a;
and receives feedback y;. In these evaluations, each user provides
feedback in exactly one interaction and different user feedback
signals are mutually exclusive, so that y; is a one-hot vector. In
simulated environments, the ground truth reward is sometimes
used for evaluation but never revealed to the algorithm.

IWhen the number of actions is changing from round to round, we use importance

weighting to synthesize a non-uniform action distribution with low rewards, but we
elide this detail for ease of exposition.
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Simulator Design. Before the start of each experiment, user pro-
files with fixed latent rewards for each action are generated. The
users are also assigned predetermined communication styles, so
the probability of emitting a given signal conditioned on the latent
reward remains static throughout the duration of the experiment.
For the available feedback, users can provide feedback using five
signals: (1) like, (2) dislike, (3) click, (4) skip and (5) none. The feed-
back includes a mix of explicit (likes, dislikes) and implicit (clicks,
skips, none) signals. Despite receiving no human input on the as-
sumed meaning of the implicit signals, we will demonstrate that
IGL can determine which feedback are associated with which latent
state. In addition to policy optimization, IGL can also be a tool for
automated feature discovery. To reveal the qualitative properties of
the approach, the simulated probabilities for observing a particular
feedback given the reward are chosen so that they can be perfectly
decoded, i.e., each feedback has a nonzero emission probability
in exactly one latent reward state. Production data does not obey
this constraint (e.g., accidental emissions of all feedback occur at
some rate): theoretical analysis of our approach without perfectly
decodable rewards is a topic for future work.

4.1 Motivating the 3 State Model for
Recommender Systems

We now implement Algorithm 1 for 2 latent states as IGL-P(2). The
experiment here shows the following two results about IGL-P(2):
(i) it is able to succeed in the scenario when there are 2 underlying
latent rewards and (ii) it can no longer do so when there are 3 latent
states. Fig. 1 shows the simulator setup used, where clicks and likes
are used to communicate satisfaction, and dislikes, skips and no
feedback (none) convey (active or passive) dissatisfaction.

=) () () () )

(a) 2 latent state model
[dislike] [ skip ] [ none ] [ click ] [ like ]

(b) 3 latent state model

Figure 1: Simulator settings for 2 state and 3 state latent
model. In Fig. 1a, r = 0 corresponds to anything other than
the user actively enjoying the content, whereas in Fig. 1b,
lack of user enjoyment is split into indifference and active
dissatisfaction.
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Fig. 2 shows the distribution of rewards for IGL-P(2) as a func-
tion of the number of iterations, for both the 2 and 3 latent state
model. When there are only 2 latent rewards, IGL-P(2) consistently
improves; however for 3 latent states, IGL-P(3) oscillates between
r = 1and r = —1, resulting in much lower average user satisfaction.
The empirical results demonstrate that although IGL-P(2) can suc-
cessfully identify and maximize the rare feedbacks it encounters, it
is unable to distinguish between satisfied and dissatisfied users.

mew
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cumulative avg
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Figure 2: Performance of IGL-P(2) in simulated environment.
Although IGL-P(2) is successful with the 2 state simulator, it
fails on the 3 state simulator and oscillates between attempt-
ing to maximizer =1andr = -1.

4.2 IGL-P(3): Personalized Reward Learning for
Recommendations

Since IGL-P(2) is not sufficient for the recommendation system set-
ting, we now explore the performance of IGL-P(3). Using the same
simulator as Fig. 1b, we evaluated IGL-P(3). Fig. 3a demonstrates
the distribution of the rewards over the course of the experiment.
IGL-P(3) quickly converged, and because of the partial negative
feedback for dislikes, never attempted to maximize the r = —1 state.
Even though users used the ambiguous skip signal to express dis-
satisfaction 80% of the time, IGL-P(3) was still able to learn user
preferences.

In order for IGL-P(3) to succeed, the algorithm requires direct
grounding from the dislike signal. We next examined how IGL-P(3)
is impacted by increased or decreased presence of user dislikes.
Fig. 3b was generated by varying the probability p of users emitting
dislikes given r = —1, and then averaging over 10 experiments
for each choice of p. While lower dislike emission probabilities
are associated with slower convergence, IGL-P(3) is able to over-
come the increase in unlabeled feedback and learn to associate the
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skip signal with user dissatifaction. Once the feedback decoding
stabilizes, regardless of the dislike emission probability, IGL-P(3)
enjoys strong performance for the remainder of the experiment.

Lo
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(a) Ground truth learning curves, P(dislike|r = —1) = 0.2.
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(b) Effect of varying P(dislike|r = -1).

Figure 3: Performance of IGL-P(3) in simulated environment.
In Fig. 3a, IGL-P(3) successfully maximizes user satisfaction
while minimizing dissatisfaction. Fig. 3b demonstrates how
IGL-P(3) is robust to varying the frequency of partial infor-
mation received, although more data is needed for conver-
gence when “definitely bad” events are less frequent.

4.3 Production Results

Our production setting is a real world image recommendation sys-
tem that serves hundreds of millions of users. In our recommenda-
tion system interface, users provide feedback in the form of clicks,
likes, dislikes or no feedback. All four signals are mutually exclusive
and the user only provides one feedback after each interaction. For
these experiments, we use data that spans millions of interactions
over a period of days. The current policy implemented in practice
is a CB algorithm that utilizes a hand-engineered reward function.
The production policy achieves both more click and like feedback
than directly optimizing for the number of clicks or directly opti-
mizing for the number of likes. As a result, any improvements over
the production policy imply improvement over any bandit algorithm
for click feedback.

We implement IGL-P(2) and IGL-P(3) and report the perfor-
mance as relative lift metrics over the production baseline. Unlike
the simulation setting, we no longer have access to the user’s latent
reward after each interaction. As a result, we evaluate the perfor-
mance of the novel IGL implementations through the implicit and
explicit feedback signals. An increase in both clicks and likes, and
a decrease in dislikes, are considered desirable outcomes. Table 1
shows the results of our empirical study.
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In the simulations, IGL-P(2) exhibited a failure mode of reliable
identification of extreme events, with an inability to avoid extreme
negative events. Our production data shows a similar pathology,
where IGL-P(2) receives dramatically more dislikes, at the ex-
pense of likes. Although the true latent state is unknown, IGL-P(2)
achieved worse performance on explicit feedback signals, directly
implying that users had fewer positive interactions and significantly
more negative interactions. These results provide evidence for the
>2 latent state model in real world recommendation systems.

Although we established that users have more than two latent
states, it might not be the case that 3 states is sufficient to capture
the recommendation system setting. Our evaluation of IGL-P(3)
on our data however, provides evidence that 3 states are enough,
and that IGL is able to succeed with the context dependent assump-
tions. IGL-P(3) was able to achieve performance comparable to the
production baseline, with a strong directional improvement in total
clicks. This is a notable achievement, because the baseline deployed
in production uses a meticulously tuned, hand-engineered reward
function generated from an order of magnitude more historical
data.

5 DISCUSSION

We presented IGL for recommender systems, an approach to pro-
ducing personalized recommendations that can leverage rich and
diverse types of user feedback signals. In this paper, we showed
that IGL can elegantly sidestep complicated manual reward engi-
neering and effectively learn how to maximize user satisfaction
with minimal human input. We considered 5 feedback signals in
this work, but IGL can easily be scaled to incorporate many more
signals with little computational cost.

To complete this work, we want to theoretically investigate the
approach presented here in two key directions: first, characterizing
finite-sample behaviour; and second, relaxing the assumption of
perfectly decodable reward.

One of the open challenges for IGL is developing effective ways
of evaluating its performance given the lack of true grounding,
especially in situations where explicit user feedback might not be
available at all. We speculate that, due to both personalization and
the “rewards are rare” prior, the latent reward inferred by IGL could
prove superior in casually predicting longitudinal outcomes relative
to raw feedback statistics. Because longitudinal outcomes can have
facially obvious semantics (e.g., subscription renewals) this could
provide an alternative grounding for evaluating IGL.

Another promising future direction is IGL for fair recommender
systems. Modern systems optimize for set objectives, often marginal-
izing user subpopulations that interact with recommender systems
in different ways [12]. Since context dependent IGL allows for
personalized reward learning, it has the potential to perform con-
sistently and fairly across diverse subgroups of users.
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