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Motivation Gaze-enhanced Multi-step Task Segmentation

Automatic multi-step task segmentation (even with moderate noise) has
been shown to be an effective intermediate step for multi-step policy
learning [6]. We show that gaze helps to improve performance for task
segmentation.
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We use two different residual neural network architectures (ResNet-50)
[2, 3] pretrained on ImageNet for subtask classification. These
architectures have shown to perform well for activity recognition in
videos. We concatenate normalized gaze coordinates in image frame . A —
w1th visual features before the classification layer. Target: Red Bowi Target: Wnite Table Target. Green Cup

----------------------------------------------------------------------------------------------------------

Prior work has shown gaze to convey goals, intent for future actions and mental load 1n
human-human interaction, human manipulation and human-robot teleoperation
[4, 5]. Is gaze from human demonstrations informative for learning?
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enhance robot learning?

Gaze-augmented Bayesian

To understand the role of human gaze when humans teach robots, we study
eye gaze behavior under two different Learning from Demonstration (L{D)
paradigms:

Inverse Reinforcement Learning

Bayesian Inverse Reinforcement Learning (BIRL) [ 1]

(1) Keyframe based Kinesthetic Demonstrations (KT): Users move the
robot’s end-effector and provide keyframes along a desired trajectory

(2) Video/Observational Demonstrations: Robot passively observes the
human performing the task themself.
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Kinesthetic Demonstrations: Total 124 minutes of video data

e Reasons over a distribution of reward functions Posterior  Likelihood  Prior
e Uses MCMC to sample from posterior
e Assumes softmax demonstrator likelithood
e MAP reward estimate: robot’s best guess of the demonstrator’s intent
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We conducted a 2 x 2 mixed-design human subjects study [user type: novice
or expert x gaze fixation area: task relevant objects or task-irrelevant objects]. [ -
I We recruited 20 subjects (10 expert and 10 novice robot users) and collect Video Dermonstrations: Total 27 minutes of video data
I first-person video (50Hz) and corresponding gaze coordinates via the Tobii Pro

Glasses Eye Tracker 2. .

Each user provides KT and Video Demonstrations for two tasks
(placement and pouring) of varying complexity, under the same task
layouts as shown. The order.of demonstration typeg 1S counterbalanc.ed Placement Task (single step):  Pouring Task (multi-step):
across all users. Users provide 6 demos (3 KT, 3 video) for the pouring Users are asked to place the Users are asked to pour pasta
. green ladle either to the right of from the green cup into the red
task and 4 demos (2 KT, 2 video) for the placement task. Each demo of  ihe yellow bowl or left of the red ~ bowl and then from the yellow

the placement task is either spatially related to the bowl or the plate. plate. cup into the blue bowl.

Gaze-augmented Bayesian Inverse Reinforcement Learning (Gaze + BIRL)

e Gaze can help weed out unlikely reward functions better P(R|D,G) x P(D|R)P(R|G)
e Differences in the amount of time spent looking at an object of interest can
arise from the intent or internal reward of the demonstrator.
e Assumption on the Reward function: weighted sum of RBF kernels placed R(z) = wy; - b f(x,cij, 02)
around each object. RBF's help capture the spatial relations around the objects. =1 =1
e Penalize reward functions which violate the ranking of weights on object pairs

in comparison to the amount of time fixated on them.

Gaze Patterns in Human Demonstrations
for Robots
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novice users). Video demos container a cleaner gaze fixation patterns than KT demos.

Distinct Gaze Patterns emerge between Expert / Novice Robot Users, Kinesthetic / Video Demonstrations,

Step / Non-step keyframes
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