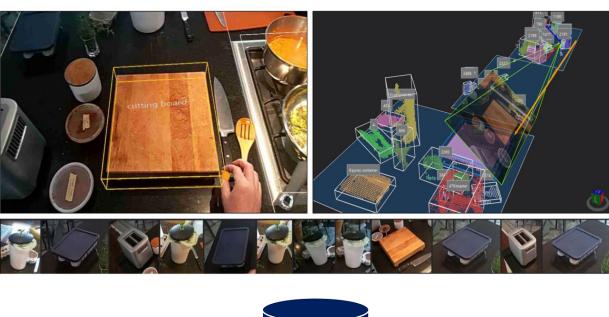


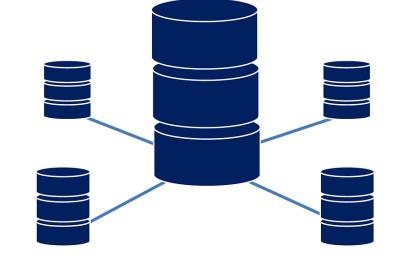
Streaming Active Learning with Deep Neural Networks Akanksha Saran, Safoora Yousefi, Akshay Krishnamurthy, John Langford, Jordan T. Ash

Real-World Applications with Streaming Data Settings

In several real-world applications, data arrive in a stream and the total number of samples are unknown ahead of time.

- Interaction-centric AR/VR applications such as continual object/activity learning in the wild
- Fixed datasets that are large, fractured and interacted via streaming, distributed data frameworks

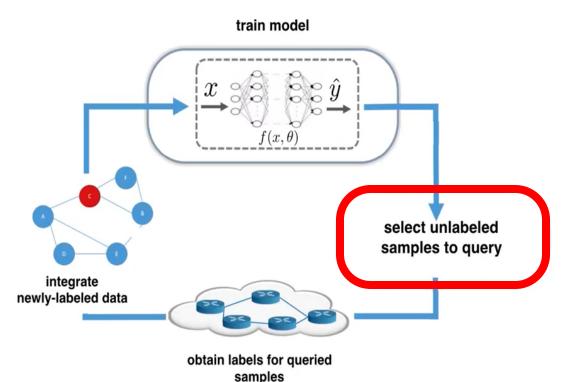




How can we train deep neural networks in a data efficient manner for streaming applications?

Batch Active Learning for Deep Neural Networks

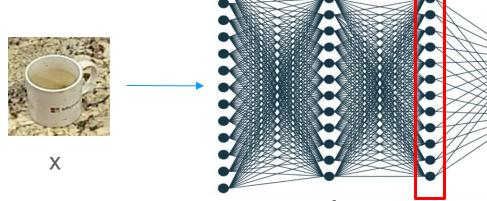
- Batch active learning or pool-based active learning for deep neural networks identifies a batch of k samples from an unlabeled data pool to be integrated into the training set
- Popular approaches for batch active learning rely on samplers that require all unlabeled data to be simultaneously available.

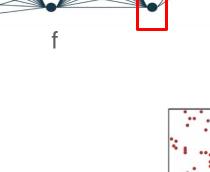


State-of-the-art non-streaming batch active learning method BADGE [1] trades off between the model's **uncertainty** about data labels and **diversity** of samples in the batch.

Representation: Hypothetical Gradient Embeddings

 $\hat{y_t} = \arg\max f(x_t; \theta)$ $g(x_t) = \frac{\partial}{\partial \theta_L} \ell(f(x_t; \theta), \hat{y}_t)$

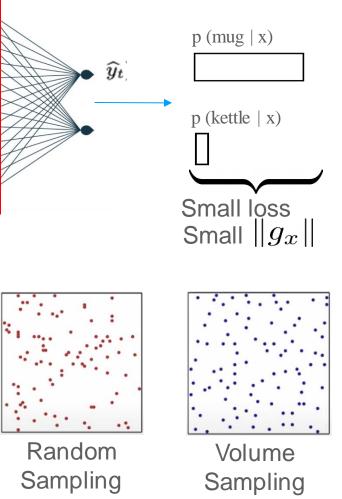




 $p_B \propto \det \Big(\sum_{-} g(x)g(x)^{ op}\Big)$

Sampling: Volume Sampling

The determinant for volume sampling is large for a batch of high magnitude, linearly independent samples, encouraging diversity in the batch.



Streaming Batch Active Learning for Deep Neural Networks

For streaming batch active learning, desirable to approximate volume sampling with the following properties:

batch of point

Sampling a single poir

Committal: Select samples for querying as soon as they arrive in the stream

Equitable sampling: Distribute labeling queries evenly across the data stream to match a maximum query rate q

 $\mathbb{E}_{x}[p_{t}] = \mathbb{E}_{x}\left[z_{t} \cdot g(x_{t})^{\top} \widehat{\Sigma}_{t}^{-1} g(x_{t})\right] = q$ Scaling term **Query Rate**

VeSSAL: VolumE Sampling for Streaming Active Learning

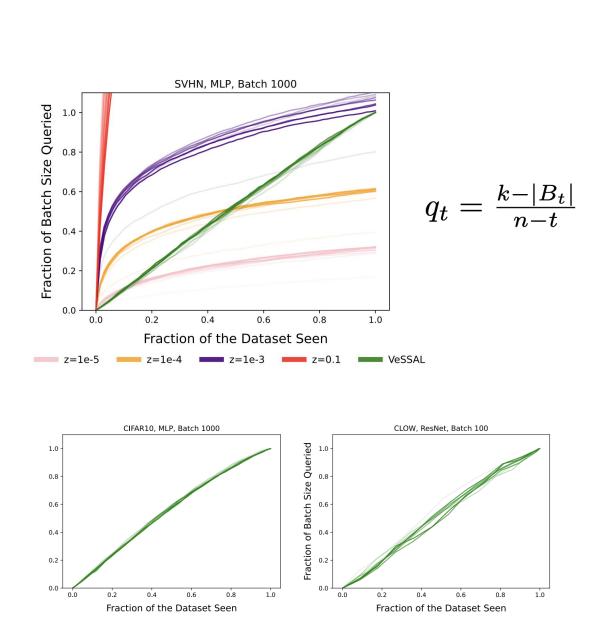
 $\mathbb{E}_x \Big[z_t \cdot g(x)^\top \hat{\Sigma}_t^{-1} g(x) \Big] = z_t \cdot \mathbb{E}_x \Big[\operatorname{tr} \Big(g(x)^\top \hat{\Sigma}_t^{-1} g(x) \Big) \Big]$ $= z_t \cdot \mathbb{E}_x \Big[\operatorname{tr} \left(\hat{\Sigma}_t^{-1} g(x) g(x)^\top \right) \Big]$ $= z_t \cdot \operatorname{tr}\left(\hat{\Sigma}_t^{-1} \mathbb{E}_x \Big[g(x) g(x)^{ op} \Big]
ight)$

$$\mathbb{E}_{x}[p_{t}] = \mathbb{E}_{x}\left[z_{t} \cdot g(x_{t})^{\top} \widehat{\Sigma}_{t}^{-1} g(x_{t})\right] = q \qquad [1]$$
$$= z_{t} \operatorname{tr}\left(\widehat{\Sigma}_{t}^{-1} \mathbb{E}_{x}\left[g(x_{t})g(x_{t})^{\top}\right]\right) \qquad [2]$$

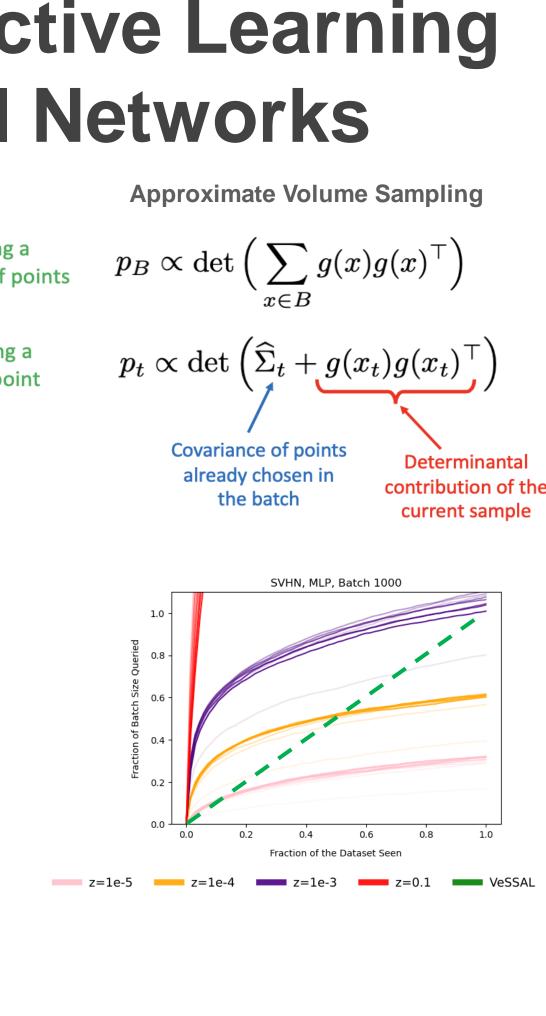
Covariance of all samples

seen so far

Inverse covariance of points already chosen in the batch



Algorithm 1 Volume sampling for streaming active learning (VeSSAL) **Require:** Neural network $f(x; \theta)$, unlabeled stream of samples U, ideal sampling rate q1: Initialize t = 12: Initialize $\hat{\Sigma}_0^{-1} = \lambda^{-1} I_d$ {regularized by λ for stability} 3: Initialize $A_0 = 0_{d,d}$ {covariance over all data} 4: Initialize $B = \emptyset$ {set of chosen samples} 5: for $x_t \in U$: do $A_t \leftarrow \frac{t-1}{t} A_{t-1} + \frac{1}{t} g(x_t) g(x_t)^{\top}$ $p_t = q \cdot g(x_t)^{\top} \hat{\Sigma}_t^{-1} g(x_t) \operatorname{tr}(\hat{\Sigma}_t^{-1} A_t)^{-1}$ with probability $\min(p_t, 1)$: Query label y_t for sample x_t $B \leftarrow B \cup (x_t, y_t)$ 10: $\hat{\Sigma}_{t+1}^{-1} \leftarrow \hat{\Sigma}_t^{-1} - \frac{\hat{\Sigma}_t^{-1} g(x_t) g(x_t)^\top \hat{\Sigma}_t^{-1}}{1 + g(x_t)^\top \hat{\Sigma}_t^{-1} g(x_t)} \text{ {rank-1 Wood-}}$ 11: bury update} else: 12: $\hat{\Sigma}_{t+1}^{-1} \leftarrow \hat{\Sigma}_t^{-1}$ 13: 14: $t \leftarrow t+1$ 15: **return** labeled batch B for retraining f16: end for

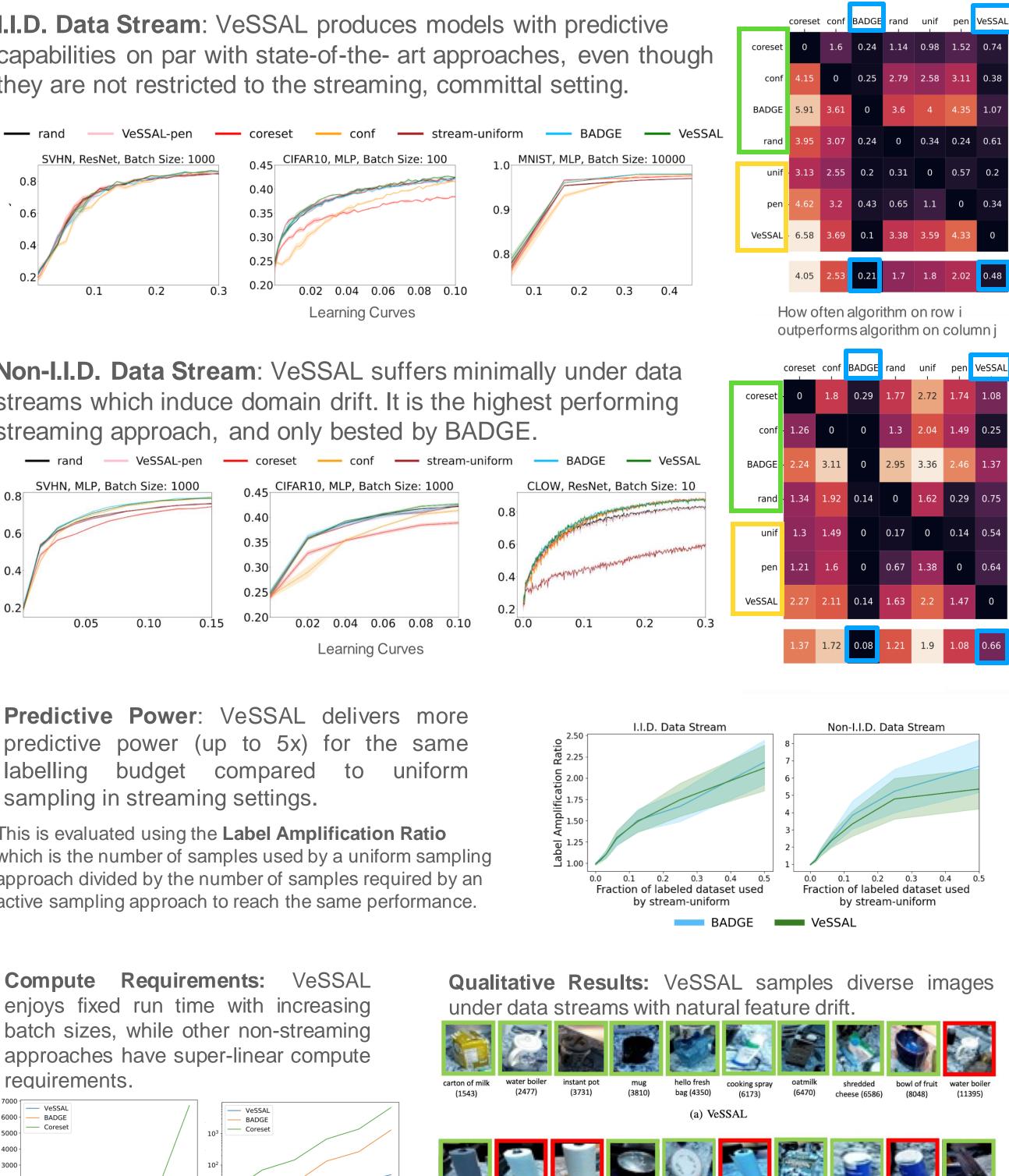


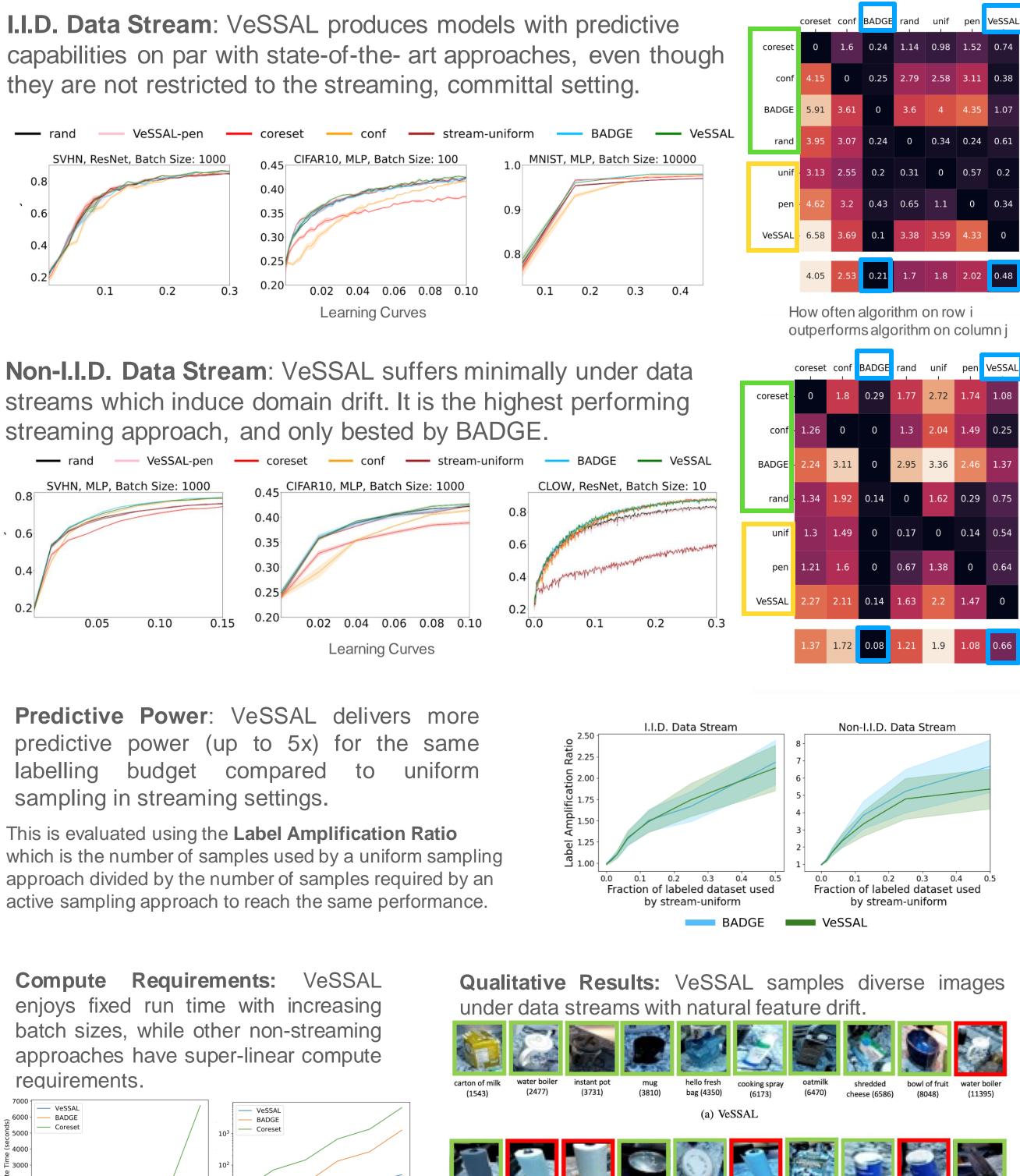
VeSSAL (algebraically) autotunes the scaling term z_t by disentangling the gradient statistics $\mathbb{E}_x\left[g(x)g(x)^{\top}\right]$ from the constantly evolving $\hat{\Sigma}_t^{-1}$.

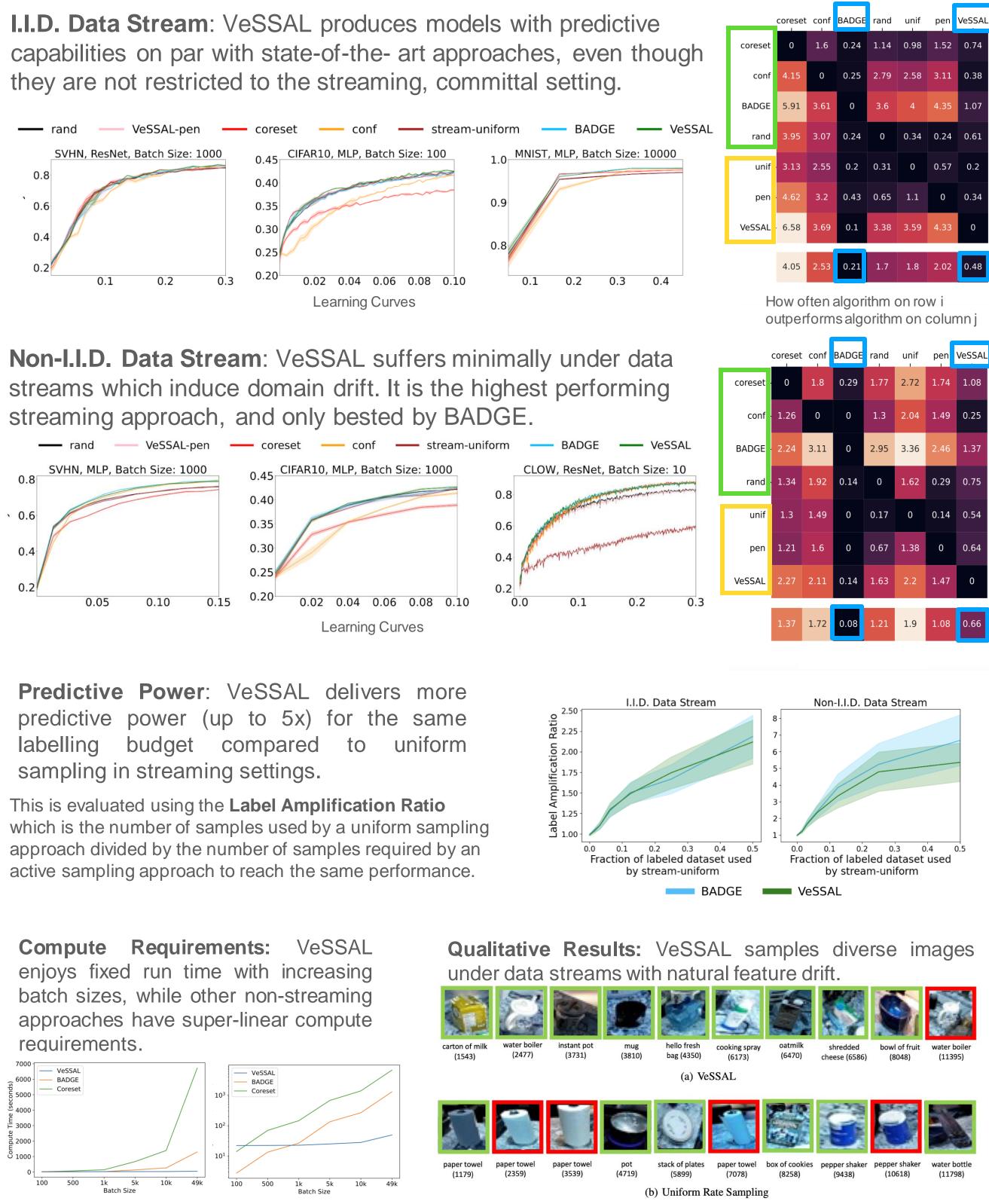
$$p_{t} = \frac{q \cdot g(x_{t})^{\top} \hat{\Sigma}_{t}^{-1} g(x_{t})}{\operatorname{tr} \left(\frac{1}{t} \hat{\Sigma}_{t}^{-1} \sum_{i=1}^{t} g(x_{i}) g(x_{i})^{\top}\right)}$$

Sampling Probability

We conduct experiments with 4 datasets x 3 batch sizes x 3 neural network architectures x 7 active learning algorithms (streaming and non-streaming)







[1] Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J., and Agarwal, A. Deep batch active learning by diverse, un-certain gradient lower bounds. International Conference on Learning Representations, 2020. [2] Ash, J., Goel, S., Krishnamurthy, A., and Kakade, S. Gone fishing: Neural active learning with fisher embeddings. Advances in Neural Information Processing Systems, 34: 8927–8939, 2021. [3] MacKay, D. J. Information-based objective functions for active data selection. *Neural computation*, 4(4):590–604, 1992. [4] Settles, B. Active learning literature survey. University of Wisconsin, Madison, 2010. [5] Bohus, D., Andrist, S., Feniello, A., Saw, N., and Horvitz, E. Continual learning about objects in the wild: An interactive approach. In Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 476–486, 2022.

Results

VeSSAL is a high-performing, hyperparameter free, computationally efficient, committal acquisition function that trades off between diversit & uncertainty from a stream of samples to match a desired query rate.

References