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Real-World Applications with 

Streaming Data Settings

In several real-world applications, data 

arrive in a stream and the total number 

of samples are unknown ahead of time.

• Interaction-centric AR/VR 

applications such as continual 

object/activity learning in the wild

• Fixed datasets that are large, 

fractured and interacted via 

streaming, distributed data 

frameworks

VeSSAL (algebraically) autotunes the 
scaling term       by disentangling the 

gradient statistics           from the 

constantly evolving        .
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VeSSAL is a high-performing, hyperparameter free, computationally 

efficient, committal acquisition function that trades off between diversity 

& uncertainty from a stream of samples to match a desired query rate. 

Streaming Batch Active Learning 

for Deep Neural Networks

Committal: Select samples for 

querying as soon as they arrive in 

the stream

Results
We conduct experiments with 4 datasets x 3 batch sizes x 3 neural network 
architectures x 7 active learning algorithms ( streaming and non-streaming ).
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VeSSAL: VolumE Sampling for 

Streaming Active Learning

Equitable sampling: Distribute labeling 

queries evenly across the data stream to 

match a maximum query rate q

Predictive Power: VeSSAL delivers more 

predictive power (up to 5x) for the same 

labelling budget compared to uniform 

sampling in streaming settings.

Qualitative Results: VeSSAL samples diverse images 

under data streams with natural feature drift.

Compute Requirements: VeSSAL 

enjoys fixed run time with increasing 

batch sizes, while other non-streaming 

approaches have super-linear compute 

requirements.

I.I.D. Data Stream: VeSSAL produces models with predictive 

capabilities on par with state-of-the- art approaches, even though 

they are not restricted to the streaming, committal setting.

Non-I.I.D. Data Stream: VeSSAL suffers minimally under data 

streams which induce domain drift. It is the highest performing 

streaming approach, and only bested by BADGE.

How can we train deep neural networks in a data efficient manner 

for streaming applications? 

For streaming batch active learning, 

it is desirable to approximate 

volume sampling with the following 

properties:

Batch Active Learning for Deep 

Neural Networks
• Batch active learning or pool-based active 

learning for deep neural networks identifies 

a batch of k samples from an unlabeled 

data pool to be integrated into the training 

set.

• Popular approaches for batch active 

learning rely on samplers that require all 

unlabeled data to be simultaneously 

available.
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State-of-the-art non-streaming batch active learning method BADGE [1] 

trades off between the model’s uncertainty about data labels and diversity 

of samples in the batch.

The determinant for volume sampling is large for a 
batch of high magnitude, linearly independent samples, 

encouraging diversity in the batch.

This is evaluated using the Label Amplification Ratio 

which is the number of samples used by a uniform sampling 

approach divided by the number of samples required by an 

active sampling approach to reach the same performance.

Learning Curves

Learning Curves How often algorithm on row i 

outperforms algorithm on column j
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